Abstract Background Clostridium perfringens is an opportunistic human pathogen that causes necrotic enteritis, mild diarrhea, clostridial myonecrosis or gas gangrene, sepsis, etc. In this study, we aim to determine the pathogenesis of this bacterium at the genomic level. The genome of strain CBA7123 was sequenced, and a comparative genomic analysis between strain CBA7123 and four other related C. perfringens strains was performed. Results The genome of strain CBA7123 consisted of one circular chromosome and one plasmid that were 3,088,370 and 46,640 bp long with 28.5 and 27.1 mol% G+C content, respectively. The genomic DNA was predicted to contain 2798 open reading frames (ORFs), 10 rRNA genes, and 94 tRNA genes. The genomic comparison analysis between the five strains revealed the distinctive virulence properties of strain CBA7123 by highlighting certain strain-specific genes. Conclusions In this study, the C. perfringens CBA7123 genome was sequenced and compared with other C. perfringens genomes. Among the various genes sequenced, the detection of antimicrobial resistance genes and those encoding various virulence factors may extend the understanding of the pathogenesis of C. perfringens strains.