Remote Sensing (May 2023)

Comparative Analysis of Digital Elevation Model Generation Methods Based on Sparse Modeling

  • Takashi Fuse,
  • Kazuki Imose

DOI
https://doi.org/10.3390/rs15112714
Journal volume & issue
Vol. 15, no. 11
p. 2714

Abstract

Read online

With the spread of aerial laser bathymetry (ALB), seafloor topographies are being measured more frequently. Nevertheless, data deficiencies occur owing to seawater conditions and other factors. Conventional interpolation methods generally need to produce digital elevation models (DEMs) with sufficient accuracy. If the topographic features are considered as a basis, the DEM should be reproducible based on a combination of such features. The purpose of this study is to develop new DEM generation methods based on sparse modeling. Based on a review of the definitions of sparsity, we developed DEM generation methods based on a discrete cosine transform (DCT), DCT with elastic net, K-singular value decomposition (K-SVD), Fourier regularization, wavelet regularization, and total variation (TV) minimization, and conducted a comparative analysis. The developed methods were applied to artificially deficient DEM and ALB data, and their accuracy was evaluated. Thus, as a conclusion, we can confirm that the K-SVD method is appropriate when the percentage of deficiencies is low, and that the TV minimization method is appropriate when the percentage of deficiencies is high. Based on these results, we also developed a method integrating both methods and achieved an RMSE of 0.128 m.

Keywords