Journal of Functional Biomaterials (Mar 2025)
Biomechanical Evaluation of a Novel Non-Engaging Abutment and Screw in Internal Implant Systems: Comparative Fatigue and Load Testing
Abstract
Dental implants rely on precise prosthetic design and biomechanical stability to ensure long-term success. This study evaluates the mechanical performance of non-engaging abutments in multi-unit combined screw- and cement-retained prostheses (CSCRP) using two internal implant systems: the BlueDiamond (BD) and AnyOne (AO) systems. Unlike conventional implant systems that utilize the same type of screw for both engaging and non-engaging abutments, the BD system employs a distinct screw design for non-engaging abutments. A total of 80 implants were tested, with 40 in each group. Mechanical testing included static compressive load and fatigue tests following ISO 14801 standards. The BD system demonstrated significantly higher compressive strength (326.32 kgf vs. 231.82 kgf, p < 0.001) and 23.4% greater fatigue strength compared to the AO system. Precision fit analysis confirmed no significant deformation, microcracks, or fractures after 5 million loading cycles. These findings suggest that the BD system’s unique screw design for non-engaging abutments contributes to improved mechanical performance and durability. Further clinical studies are needed to assess the long-term implications of this design on prosthetic stability and implant longevity.
Keywords