Coordinated increase of reliable cortical and striatal ensemble activations during recovery after stroke
Ling Guo,
Sravani Kondapavulur,
Stefan M. Lemke,
Seok Joon Won,
Karunesh Ganguly
Affiliations
Ling Guo
Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
Sravani Kondapavulur
Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
Stefan M. Lemke
Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
Seok Joon Won
Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
Karunesh Ganguly
Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Corresponding author
Summary: Skilled movements rely on a coordinated cortical and subcortical network, but how this network supports motor recovery after stroke is unknown. Previous studies focused on the perilesional cortex (PLC), but precisely how connected subcortical areas reorganize and coordinate with PLC is unclear. The dorsolateral striatum (DLS) is of interest because it receives monosynaptic inputs from motor cortex and is important for learning and generation of fast reliable actions. Using a rat focal stroke model, we perform chronic electrophysiological recordings in motor PLC and DLS during long-term recovery of a dexterous skill. We find that recovery is associated with the simultaneous emergence of reliable movement-related single-trial ensemble spiking in both structures along with increased cross-area alignment of spiking. Our study highlights the importance of consistent neural activity patterns across brain structures during recovery and suggests that modulation of cross-area coordination can be a therapeutic target for enhancing motor function post-stroke.