Physical Review X (Sep 2021)

Dynamical Backaction Magnomechanics

  • C. A. Potts,
  • E. Varga,
  • V. A. S. V. Bittencourt,
  • S. Viola Kusminskiy,
  • J. P. Davis

DOI
https://doi.org/10.1103/PhysRevX.11.031053
Journal volume & issue
Vol. 11, no. 3
p. 031053

Abstract

Read online Read online

Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in the cooling of a mechanical resonator to its ground state, driving phonon lasing, the generation of entangled states, and observation of the optical-spring effect. In certain magnetic materials, mechanical vibrations can interact with magnetic excitations (magnons) via the magnetostrictive interaction, resulting in an analogous magnon-induced dynamical backaction. In this article, we directly observe the impact of magnon-induced dynamical backaction on a spherical magnetic sample’s mechanical vibrations. Moreover, dynamical backaction effects play a crucial role in many recent theoretical proposals; thus, our work provides the foundation for future experimental work pursuing many of these theoretical proposals.