Forests (May 2019)

Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O<sub>3</sub>-Sensitive Poplar Trees

  • Alessio Giovannelli,
  • Maria Laura Traversi,
  • Monica Anichini,
  • Yasutomo Hoshika,
  • Silvano Fares,
  • Elena Paoletti

DOI
https://doi.org/10.3390/f10050396
Journal volume & issue
Vol. 10, no. 5
p. 396

Abstract

Read online

High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.

Keywords