PLoS ONE (Jan 2020)

Patent citation network analysis: A perspective from descriptive statistics and ERGMs.

  • Manajit Chakraborty,
  • Maksym Byshkin,
  • Fabio Crestani

DOI
https://doi.org/10.1371/journal.pone.0241797
Journal volume & issue
Vol. 15, no. 12
p. e0241797

Abstract

Read online

Patent Citation Analysis has been gaining considerable traction over the past few decades. In this paper, we collect extensive information on patents and citations and provide a perspective of citation network analysis of patents from a statistical viewpoint. We identify and analyze the most cited patents, the most innovative and the highly cited companies along with the structural properties of the network by providing in-depth descriptive analysis. Furthermore, we employ Exponential Random Graph Models (ERGMs) to analyze the citation networks. ERGMs enables understanding the social perspectives of a patent citation network which has not been studied earlier. We demonstrate that social properties such as homophily (the inclination to cite patents from the same country or in the same language) and transitivity (the inclination to cite references' references) together with the technicalities of the patents (e.g., language, categories), has a significant effect on citations. We also provide an in-depth analysis of citations for sectors in patents and how it is affected by the size of the same. Overall, our paper delves into European patents with the aim of providing new insights and serves as an account for fitting ERGMs on large networks and analyzing them. ERGMs help us model network mechanisms directly, instead of acting as a proxy for unspecified dependence and relationships among the observations.