Results in Physics (Jan 2017)
Newtonian heating effect in nanofluid flow by a permeable cylinder
Abstract
Here characteristics of Newtonian heating in permeable stretched flow of viscous nanomaterial are investigated. Adopted nanomaterial model incorporates the phenomena of Brownian motion and thermophoresis. Concept of boundary layer is employed for the formulation procedure. Convergent homotopic solutions are established for the nonlinear systems. Velocity, thermal and nanoparticles fields for nonlinear boundary value problems are computed and discussed. The velocity, temperature and concentration gradients are also evaluated. It is noticed that impacts of curvature and suction/injection parameters on skin friction coefficient are qualitatively similar. Moreover temperature distribution enhances for larger thermophoresis and Brownian motion parameters. Keywords: Stretched cylinder, Nanofluid, Newtonian heating, Brownian motion, Thermophoresis