Land (Oct 2021)
Combining Remote Sensing and Species Distribution Modelling to Assess <i>Pinus hartwegii</i> Response to Climate Change and Land Use from Izta-Popo National Park, Mexico
Abstract
A detailed analysis of distribution shifts in Pinus hartwegii Lindl. is provided across time for Izta-Popo National Park (México). Combining satellite images, species distribution models, and connectivity analysis we disentangled the effect of climate change and anthropogenic land use on the habitat availability. Twenty-four Maxent habitat suitability models with varying complexity were combined with insights on vegetation and land cover change derived from two Landsat satellite images at 30-m resolution from 1993 and 2013. To evaluate effects of climate change on Izta-Popo’s P. hartwegii forest, projections for future climatic conditions (averaged for 2050 and 2070) were derived using two General Circulation Models under three Representative CO2 concentration pathways (RCPs). Calculated fragmentation and connectivity indexes (Equivalent Connected Area and Probability of Connectivity metrics) showed significant habitat loss and habitat fragmentation that weakens P. hartwegii dispersion flux and the strength of connections. Projections of future climate conditions showed a reduction of P. hartwegii habitat suitability as populations would have to migrate to higher altitudes. However, the impact of anthropogenic land use change documented over the 20 years masks the predicted impact of climate change in Izta-Popo National Park.
Keywords