Energies (Mar 2021)

Adopting a Conversion Design Approach to Maximize the Energy Density of Battery Packs in Electric Vehicles

  • Erika Pierri,
  • Valentina Cirillo,
  • Thomas Vietor,
  • Marco Sorrentino

DOI
https://doi.org/10.3390/en14071939
Journal volume & issue
Vol. 14, no. 7
p. 1939

Abstract

Read online

Innovative vehicle concepts have been developed in the past years in the automotive sector, including alternative drive systems such as hybrid and battery electric vehicles, so as to meet the environmental targets and cope with the increasingly stringent emissions regulations. The preferred hybridizing technology is lithium-ion battery, thanks to its high energy density. The optimal integration of battery packs in the vehicle is a challenging task when designing e-mobility concepts. Therefore, this work proposes a conceptual design procedure aimed at optimizing the sizing of hybrid and battery electric vehicles. Particularly, the influence of the cell type, physical disposition and arrangement of the electrical devices is accounted for within a conversion design framework. The optimization is focused on the trade-off between the battery pack capacity and weight. After introducing the main features of electric traction systems and their challenges compared to conventional ones, the relevant design properties of electric vehicles are analyzed. A detailed strategy, encompassing the selection of battery format and technology, battery pack design and final assessment of the proposed set-up, is presented and implemented in an exemplary application, assuming an existing commercial vehicle as the reference starting layout. Prismatic, cylindrical and pouch cells are configured aiming at achieving installed battery energy as close as possible to the reference one, while meeting the original installation space constraint. The best resulting configuration, which also guarantees similar peak power performance of the reference battery-pack, allows reducing the mass of the storage system down to 70% of its starting value.

Keywords