Applied Sciences (Feb 2023)

Cattle Weight Estimation Using Fully and Weakly Supervised Segmentation from 2D Images

  • Chang-bok Lee,
  • Han-sung Lee,
  • Hyun-chong Cho

DOI
https://doi.org/10.3390/app13052896
Journal volume & issue
Vol. 13, no. 5
p. 2896

Abstract

Read online

Weight information is important in cattle breeding because it can measure animal growth and be used to calculate the appropriate amount of daily feed. To estimate the weight, we developed an image-based method that does not stress cattle and requires no manual labor. From a 2D image, a mask was obtained by segmenting the animal and background, and weights were estimated using a deep neural network with residual connections by extracting weight-related features from the segmentation mask. Two image segmentation methods, fully and weakly supervised segmentation, were compared. The fully supervised segmentation method uses a Mask R-CNN model that learns the ground truth mask generated by labeling as the correct answer. The weakly supervised segmentation method uses an activation visualization map that is proposed in this study. The first method creates a more precise mask, but the second method does not require ground truth segmentation labeling. The body weight was estimated using statistical features of the segmented region. In experiments, the following performance results were obtained: a mean average error of 17.31 kg and mean absolute percentage error of 5.52% for fully supervised segmentation, and a mean average error of 35.91 kg and mean absolute percentage error of 10.1% for the weakly supervised segmentation.

Keywords