Advances in Mechanical Engineering (Aug 2014)
Manufacturing of Porous Polycaprolactone Prepared with Different Particle Sizes and Infrared Laser Sintering Conditions: Microstructure and Mechanical Properties
Abstract
The techniques of Rapid Prototyping, also known as Additive Manufacturing, have prompted research into methods of manufacturing polymeric materials with controlled porosity. This paper presents the characterization of the structure and mechanical properties of porous polycaprolactone (PCL) fabricated by Selective Laser Sintering (SLS) using two different particle sizes and laser processing conditions. The results of this study indicated that it is possible to control the microstructure, that is, pore size and degree of porosity, of the polycaprolactone matrix using the SLS technique, by varying the particle size and laser energy density, obtaining materials suitable for different applications, scaffolds and drug delivery and fluid mechanical devices. The specimens manufactured with smaller particles and higher laser energy density showed a higher degree of sintering, flexural modulus, and fatigue resistance when compared with the other specimens.