Journal of Materials Research and Technology (Sep 2023)

Extraordinary strength and ductility of cold-rolled 304L stainless steel at cryogenic temperature

  • Wei Jiang,
  • Kerui Zhu,
  • Jiansheng Li,
  • Wenbo Qin,
  • Jian Zhou,
  • Zhumin Li,
  • Kaixuan Gui,
  • Yu Zhao,
  • Qingzhong Mao,
  • Banglun Wang

Journal volume & issue
Vol. 26
pp. 2001 – 2008

Abstract

Read online

In present work, tensile behaviors of cold-rolled 304L stainless steel were investigated at both room temperature (RT) and liquid nitrogen temperature (LNT). After cold-rolling with a thickness reduction of ∼92%, the 304L stainless steel exhibits an ultrahigh yield strength of 1787 MPa at the expense of ductility (1.06% of uniform elongation) at RT. At LNT, the yield strength (upper yield point of σyu = 2308.4 MPa and lower yield point of σyl = 1894.2 MPa) and uniform elongation (23%) increase greatly. Detailed microstructural investigation reveals that the cold-rolled 304L stainless steel comprises mainly of deformation induced martensite and high density of dislocations (9.06 ×1014 m−2), leading to a lack of dislocation storage capacity and thus brittle fracture at RT. While interrupt tests at LNT reveal a first increase and then decline in dislocation density with tensile strain, accompanied with phase transformation from austenite to martensite. The delamination events also occur, characterized by the multiple separated laminated ligaments observed at fracture surface. Therefore, the high dense dislocations and transformation-induced plasticity (TRIP) effect as well as delamination toughening mechanism contributes to the excellent combination of strength and ductility at LNT. Our work provides experimental and microstructural insights into the deformation mechanisms of the ∼92%-cold-rolled 304L stainless steel during tensile deformation at RT and LNT.

Keywords