Remote Sensing (Oct 2024)

Adapting CuSUM Algorithm for Site-Specific Forest Conditions to Detect Tropical Deforestation

  • Anam Sabir,
  • Unmesh Khati,
  • Marco Lavalle,
  • Hari Shanker Srivastava

DOI
https://doi.org/10.3390/rs16203871
Journal volume & issue
Vol. 16, no. 20
p. 3871

Abstract

Read online

Forest degradation is a major issue in ecosystem monitoring, and to take reformative measures, it is important to detect, map, and quantify the losses of forests. Synthetic Aperture Radar (SAR) time-series data have the potential to detect forest loss. However, its sensitivity is influenced by the ecoregion, forest type, and site conditions. In this work, we assessed the accuracy of open-source C-band time-series data from Sentinel-1 SAR for detecting deforestation across forests in Africa, South Asia, and Southeast Asia. The statistical Cumulative Sums of Change (CuSUM) algorithm was applied to determine the point of change in the time-series data. The algorithm’s robustness was assessed for different forest site conditions, SAR polarizations, resolutions, and under varying moisture conditions. We observed that the change detection algorithm was affected by the site- and forest-management activities, and also by the precipitation. The forest type and eco-region affected the detection performance, which varied for the co- and cross-pol backscattering components. The cross-pol channel showed better deforested region delineation with less spurious detection. The results for Kalimantan showed a better accuracy at a 100 m spatial resolution, with a 25.1% increase in the average Kappa coefficient for the VH polarization channel in comparison with a 25 m spatial resolution. To avoid false detection due to the high impact of soil moisture in the case of Haldwani, a seasonal analysis was carried out based on dry and wet seasons. For the seasonal analysis, the cross-pol channel showed good accuracy, with an average Kappa coefficient of 0.85 at the 25 m spatial resolution. This work was carried out in support of the upcoming NISAR mission. The datasets were repackaged to the NISAR-like HDF5 format and processing was carried out with methods similar to NISAR ATBDs.

Keywords