Dataset of aerial photographs acquired with UAV using a multispectral (green, red and near-infrared) camera for cherry tomato (Solanum lycopersicum var. cerasiforme) monitoringDryad
Osiris Chávez-Martínez,
Sergio Alberto Monjardin-Armenta,
Jesús Gabriel Rangel-Peraza,
Zuriel Dathan Mora-Felix,
Antonio Jesus Sanhouse-García
Affiliations
Osiris Chávez-Martínez
Universidad Autónoma de Sinaloa, Facultad de Ciencias de la Tierra y el Espacio. Circuito Interior Oriente SN, Cd Universitaria, 80040 Culiacán, Sinaloa, Mexico
Sergio Alberto Monjardin-Armenta
Universidad Autónoma de Sinaloa, Facultad de Ciencias de la Tierra y el Espacio. Circuito Interior Oriente SN, Cd Universitaria, 80040 Culiacán, Sinaloa, Mexico; Laboratorio Nacional CONAHCYT de Tecnologías de la Información Geoespacial para los Sistemas Socioecológicos Resilientes (LaNCTIGeSSR), clave 89. Cerro de Coatepec, Ciudad Universitaria, 50110 Toluca de Lerdo, Mexico; Corresponding author at: Universidad Autónoma de Sinaloa, Facultad de Ciencias de la Tierra y el Espacio. Circuito Interior Oriente SN, Cd Universitaria, 80040 Culiacán, Sinaloa, Mexico.
Jesús Gabriel Rangel-Peraza
Tecnológico Nacional de México/Instituto Tecnológico de Culiacán, División de Estudios de Posgrado e Investigación, Juan de Dios Batíz 310. Col. Guadalupe, 80220 Culiacán, Sinaloa, Mexico
Zuriel Dathan Mora-Felix
Tecnológico Nacional de México/Instituto Tecnológico de Culiacán, División de Estudios de Posgrado e Investigación, Juan de Dios Batíz 310. Col. Guadalupe, 80220 Culiacán, Sinaloa, Mexico
Antonio Jesus Sanhouse-García
Tecnológico Nacional de México/Instituto Tecnológico de Culiacán, División de Estudios de Posgrado e Investigación, Juan de Dios Batíz 310. Col. Guadalupe, 80220 Culiacán, Sinaloa, Mexico
A dataset of aerial photographs acquired with an Unmanned Aerial Vehicle (UAV) DJI Phantom 4 Pro is presented for monitoring a cherry tomato (Solanum lycopersicum var. cerasiforme) crop in Navolato, Mexico. Seven photogrammetric flights were carried out to assess the plant growth using a Mapir Survey 3W multispectral camera. Multispectral images with an approximate spatial resolution of 1.83 cm/px were obtained in each photogrammetric flight. These images were acquired every 15 days starting on October 15, 2021, and ending on January 23, 2022. The dataset contains the radiometrically calibrated images of the tomato crop divided into 2 open field parcels. The dataset also includes the processed photogrammetric products (ortho-mosaics) using a binary mask to exclude the soil from the plant area. The dataset was originally acquired to assess plant growth, stress levels, and overall crop health. However, this multispectral imagery dataset can also have various uses, such as creating training datasets with accurate labels or classes which can then be used to develop, train, and/or validate machine learning algorithms for image classification, object detection tasks, or change detection analysis.