Asian-Australasian Journal of Animal Sciences (Jan 2019)
Effects of zinc-bearing palygorskite on rumen fermentation
Abstract
Objective The aim of the study was to investigate the effect of zinc-bearing palygorskite (Zn-Pal) on rumen fermentation by in vitro gas-production system. Methods In trial, 90 incubators were evenly divided into five groups: control (0% Zn-Pal), treatment I (0.2% Zn-Pal), treatment II (0.4% Zn-Pal), treatment III (0.6% Zn-Pal), and treatment IV (0.8% Zn-Pal). The contents of zinc for treatments were 0, 49, 98, 147, 196 mg/kg, respectively. The main chemical composition and microstructure of Zn-Pal was investigated by X-ray diffraction. The physicochemical features were evaluated by Zeta potential analysis, cation-exchange capacity, ethylene blue absorption and specific surface area (the Brunauer–Emmett–Teller method). In vitro gas production (GP) was recorded at 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 h incubation. Incubation was stopped at 0, 6, 12, 24, 48, and 72 h and the inoculants were tested for pH, microbial protein yield (MCP), NH3-N, volatile fatty acids (VFAs), lipopolysaccharide (LPS). Results The results showed that the GP in the treatment groups was not significantly different from the control groups (p>0.05). Compared to the control group, pH was higher at 24 h, 48 h (p<0.05), and 72 h (p<0.01) (range 6 to 7). The concentration of NH3-N in the three treatment groups was higher than in the control group at 24 h (p<0.01), meanwhile, it was lower at 48 h and 72 h (p<0.01), except in the treatment IV. The concentration of MCP in treatment I group was higher than in the control at 48 h (p<0.01). Compared with control, the LPS concentration in treatment III became lower at 12 h (p<0.05). Total VFAs in treatments were higher than in the control at 24 h, 48 h (p<0.05). Conclusion These results suggest that the addition of Zn-Pal can improve the rumen fermentation, especially when adding 0.2% Zn-Pal.
Keywords