Energy Reports (Nov 2023)

Sustainable water production with an innovative thermoelectric-based atmospheric water harvesting system

  • Sepehr Sanaye,
  • Ali Shourabi,
  • Daryoosh Borzuei

Journal volume & issue
Vol. 10
pp. 1339 – 1355

Abstract

Read online

An innovative thermoelectric-based atmospheric water harvesting system for sustainable and efficient potable water production is proposed, designed, assembled, tested, and analyzed in this research. The system contained thermoelectric units which had cold and hot surfaces. On one hand, cold surfaces were utilized to reduce the adjacent air temperature for harvesting of atmospheric water vapor. On the other hand, hot surfaces were cooled by an innovative closed circuit water cooled system which included water cooled compact heat exchangers attached to hot surfaces of thermoelectric modules. Moreover, the circulating cooling water of thermoelectric hot surfaces was cooled itself in another compact heat exchanger (cooling recovery heat exchanger) by the cold and relatively dry air exiting from the air cooling channel which was created by the thermoelectric cold surfaces. This invention facilitated the recovery of the cooling effect exiting from the air cooling channel. The impact of ambient conditions on the amount of produced water was also examined through both experimental and computational fluid dynamics (CFD) methods. The results demonstrated that the price of one liter of water production with the proposed system and the energy consumed for one liter of water production (performance factor) were 0.24 $/L and 0.56 ml/h W respectively, which were lower than those reported for thermoelectric-based research activities for atmospheric water harvesting. Furthermore, the economic analysis reveals a net present value of 438.5 $, an internal rate of return of 27.8%, and a payback period of approximately 3.7 years for the system. By presenting an innovative thermoelectric-based water harvesting system that exhibits superior performance and economic viability, this research contributes to sustainable water production.

Keywords