Scientific Reports (Jan 2022)

Correcting B 0 inhomogeneity-induced distortions in whole-body diffusion MRI of bone

  • Leonardino A. Digma,
  • Christine H. Feng,
  • Christopher C. Conlin,
  • Ana E. Rodríguez-Soto,
  • Allison Y. Zhong,
  • Troy S. Hussain,
  • Asona J. Lui,
  • Kanha Batra,
  • Aaron B. Simon,
  • Roshan Karunamuni,
  • Joshua Kuperman,
  • Rebecca Rakow-Penner,
  • Michael E. Hahn,
  • Anders M. Dale,
  • Tyler M. Seibert

DOI
https://doi.org/10.1038/s41598-021-04467-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Diffusion-weighted magnetic resonance imaging (DWI) of the musculoskeletal system has various applications, including visualization of bone tumors. However, DWI acquired with echo-planar imaging is susceptible to distortions due to static magnetic field inhomogeneities. This study aimed to estimate spatial displacements of bone and to examine whether distortion corrected DWI images more accurately reflect underlying anatomy. Whole-body MRI data from 127 prostate cancer patients were analyzed. The reverse polarity gradient (RPG) technique was applied to DWI data to estimate voxel-level distortions and to produce a distortion corrected DWI dataset. First, an anatomic landmark analysis was conducted, in which corresponding vertebral landmarks on DWI and anatomic T 2-weighted images were annotated. Changes in distance between DWI- and T 2-defined landmarks (i.e., changes in error) after distortion correction were calculated. In secondary analyses, distortion estimates from RPG were used to assess spatial displacements of bone metastases. Lastly, changes in mutual information between DWI and T 2-weighted images of bone metastases after distortion correction were calculated. Distortion correction reduced anatomic error of vertebral DWI up to 29 mm. Error reductions were consistent across subjects (Wilcoxon signed-rank p < 10–20). On average (± SD), participants’ largest error reduction was 11.8 mm (± 3.6). Mean (95% CI) displacement of bone lesions was 6.0 mm (95% CI 5.0–7.2); maximum displacement was 17.1 mm. Corrected diffusion images were more similar to structural MRI, as evidenced by consistent increases in mutual information (Wilcoxon signed-rank p < 10–12). These findings support the use of distortion correction techniques to improve localization of bone on DWI.