Machine Learning and Knowledge Extraction (Dec 2021)

Detection and Classification of Knee Injuries from MR Images Using the MRNet Dataset with Progressively Operating Deep Learning Methods

  • Ali Can Kara,
  • Fırat Hardalaç

DOI
https://doi.org/10.3390/make3040050
Journal volume & issue
Vol. 3, no. 4
pp. 1009 – 1029

Abstract

Read online

This study aimed to build progressively operating deep learning models that could detect meniscus injuries, anterior cruciate ligament (ACL) tears and knee abnormalities in magnetic resonance imaging (MRI). The Stanford Machine Learning Group MRNet dataset was employed in the study, which included MRI image indexes in the coronal, sagittal, and axial axes, each having 1130 trains and 120 validation items. The study is divided into three sections. In the first section, suitable images are selected to determine the disease in the image index based on the disturbance under examination. It is also used to identify images that have been misclassified or are noisy and/or damaged to the degree that they cannot be utilised for diagnosis in the first section. The study employed the 50-layer residual networks (ResNet50) model in this section. The second part of the study involves locating the region to be focused on based on the disturbance that is targeted to be diagnosed in the image under examination. A novel model was built by integrating the convolutional neural networks (CNN) and the denoising autoencoder models in the second section. The third section is dedicated to making a diagnosis of the disease. In this section, a novel ResNet50 model is trained to identify disease diagnoses or abnormalities, independent of the ResNet50 model used in the first section. The images that each model selects as output after training are referred to as progressively operating deep learning methods since they are supplied as an input to the following model.

Keywords