Advanced Science (Jan 2020)

Nanoscopic Insights of Amphiphilic Peptide against the Oligomer Assembly Process to Treat Huntington's Disease

  • Ruei‐Yu He,
  • Xiang‐Me Lai,
  • Chia‐Sui Sun,
  • Te‐Shien Kung,
  • Jhu‐Ying Hong,
  • Yu‐Song Jheng,
  • Wei‐Neng Liao,
  • Jen‐Kun Chen,
  • Yung‐Feng Liao,
  • Pang‐Hsien Tu,
  • Joseph Jen‐Tse Huang

DOI
https://doi.org/10.1002/advs.201901165
Journal volume & issue
Vol. 7, no. 2
pp. n/a – n/a

Abstract

Read online

Abstract Finding an effective therapeutic regimen is an urgent demand for various neurodegenerative disorders including Huntington's disease (HD). For the difficulties in observing the dynamic aggregation and oligomerization process of mutant Huntingtin (mHtt) in vivo, the evaluation of potential drugs at the molecular protein level is usually restricted. By combing lifetime‐based fluorescence microscopies and biophysical tools, it is showcased that a designed amphiphilic peptide, which targets the mHtt at an early stage, can perturb the oligomer assembly process nanoscopically, suppress the amyloid property of mHtt, conformationally transform the oligomers and/or aggregates of mHtt, and ameliorate mHtt‐induced neurological damage and aggregation in cell and HD mouse models. It is also found that this amphiphilic peptide is able to transport to the brain and rescue the memory deficit through intranasal administration, indicating its targeting specificity in vivo. In summary, a biophotonic platform is provided to investigate the oligomerization/aggregation process in detail that offers insight into the design and effect of a targeted therapeutic agent for Huntington's disease.

Keywords