Design, Construction and Finite Element Analysis of a Hexacopter for Precision Agriculture Applications
Miguel Ernesto Gutierrez-Rivera,
Jesse Y. Rumbo-Morales,
Gerardo Ortiz-Torres,
Jose J. Gascon-Avalos,
Felipe D. J. Sorcia-Vázquez,
Carlos Alberto Torres-Cantero,
Hector M. Buenabad-Arias,
Iván Guillen-Escamilla,
Maria A. López-Osorio,
Manuel A. Zurita-Gil,
Manuela Calixto-Rodriguez,
Antonio Márquez Rosales,
Mario A. Juárez
Affiliations
Miguel Ernesto Gutierrez-Rivera
Department of Mechanical Engineering, University of Guanajuato, Salamanca 36885, Mexico
Jesse Y. Rumbo-Morales
Centro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, Ameca 46600, Mexico
Gerardo Ortiz-Torres
Centro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, Ameca 46600, Mexico
Jose J. Gascon-Avalos
Centro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, Ameca 46600, Mexico
Felipe D. J. Sorcia-Vázquez
Centro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, Ameca 46600, Mexico
Carlos Alberto Torres-Cantero
Tecnológico Nacional de Mexico Campus Colima, Av. Tecnológico # 1, Col. Liberación, Villa de Álvarez 28976, Mexico
Hector M. Buenabad-Arias
Centro de Investigación en Ingenierías y Ciencias Aplicadas de La Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
Iván Guillen-Escamilla
Natural and Exact Sciences Department, University of Guadalajara, Ameca 46600, Mexico
Maria A. López-Osorio
Natural and Exact Sciences Department, University of Guadalajara, Ameca 46600, Mexico
Manuel A. Zurita-Gil
Centro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, Ameca 46600, Mexico
Manuela Calixto-Rodriguez
División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62760, Mexico
Antonio Márquez Rosales
Centro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, Ameca 46600, Mexico
Agriculture drones face important challenges regarding autonomy and construction, as flying time below the 9-minute mark is the norm, and their manufacture requires several tests and research before reaching proper flight dynamics. Therefore, correct design, analysis, and manufacture of the structure are imperative to address the aforementioned problems and ensure a robust build that withstands the tough environments of this application. In this work, the analysis and implementation of a Nylamid motor bracket, aluminum sandwich-type skeleton, and carbon fiber tube arm in a 30 kg agriculture drone is presented. The mechanical response of these components is evaluated using the finite element method in ANSYS Workbench, and the material behavior assumptions are assessed using a universal testing machine before their implementations. The general description of these models and the numerical results are presented. This early prediction of the behavior of the structure allows for mass optimization and cost reductions. The fast dynamics of drone applications set important restrictions in ductile materials such as this, requiring extensive structural analysis before manufacture. Experimental and numerical results showed a maximum variation of 8.7% for the carbon fiber composite and 13% for the Nylamid material. The mechanical properties of polyamide nylon allowed for a 51% mass reduction compared to a 6061 aluminum alloy structure optimized for the same load case in the motor brackets design. The low mechanical complexity of sandwich-type skeletons translated into fast implementation. Finally, the overall performance of the agriculture drone is evaluated through the data gathered during the flight test, showing the adequate design process.