Phenolic Compounds and Antioxidant Capacity Comparison of Wild-Type and Yellow-Leaf <i>gl1</i> Mutant of <i>Lagerstroemia indica</i>
Sumei Li,
Min Yin,
Peng Wang,
Lulu Gao,
Fenni Lv,
Rutong Yang,
Ya Li,
Qing Wang,
Linfang Li,
Yongdong Liu,
Shuan Wang
Affiliations
Sumei Li
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Min Yin
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Peng Wang
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Lulu Gao
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Fenni Lv
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Rutong Yang
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Ya Li
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Qing Wang
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Linfang Li
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Yongdong Liu
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Shuan Wang
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China
Background: The yellow-leaf gl1 mutant of Lagerstroemia indica exhibits an altered phenylpropanoid metabolism pathway compared to wild-type (WT). However, details on the metabolites associated with leaf color variation, including color-specific metabolites with bioactive constituents, are not fully understood. Methods: Chemical and metabolomics approaches were used to compare metabolite composition and antioxidant capacity between the gl1 mutant and WT leaves. Results: The mutant exhibited an irregular xylem structure with a significantly lower phenolic polymer lignin content and higher soluble phenolic compounds. Untargeted metabolomics analysis identified phenolic compounds, particularly lignans, as key differential metabolites between gl1 and WT, with a significant increase in the mutant. The neolignan derivative balanophonin-4-O-D-glu was identified as a characteristic metabolite in the gl1 mutant. The soluble phenolic compounds of the gl1 mutant exhibited higher FRAP, ABTS, DPPH, and hydroxyl radical scavenging activity than in WT. Correlation analysis showed a positive relationship between antioxidant capacity and phenolic compounds in L. indica. Conclusions: Metabolites associated with leaf color variation in the L. indica yellow-leaf gl1 mutant demonstrated high antioxidant capacity, particularly in scavenging hydroxyl radicals.