Applied Water Science (Jan 2021)

Hydro-morphometric characterization and prioritization of sub-watersheds for land and water resource management using fuzzy analytical hierarchical process (FAHP): a case study of upper Rihand watershed of Chhattisgarh State, India

  • Milan Ghosh,
  • Dipti Gope

DOI
https://doi.org/10.1007/s13201-020-01340-x
Journal volume & issue
Vol. 11, no. 2
pp. 1 – 20

Abstract

Read online

Abstract Rihand reservoir is continuously experiencing siltation due to erosion in upper basin; thus study of morphometric-based prioritization of sub-watershed has become prerequisite for implementation of measures for conservation of soil and water resource. In present study an attempted has been made to analyze characterization and prioritization of sub-watersheds in upper basin of Rihand watershed based on hydro-morphometric parameters, in an environment of Geographical Information System (GIS), with the help of Multicriteria Decision Making through Fuzzy Analytical Hierarchy Process (FAHP) techniques in order to identify critical sub-watersheds for conservation and management of soil and water resource. The morphometric characterization has been done through measurement of linear, areal and relief aspect of over seven sub-watersheds using SOI topographical sheet and SRTM data with the help of Q GIS 3.10 and White box software. In the purpose prioritization of sub-watersheds FAHP method has been implemented through assigning fuzzy membership function to each of 15 morphometric parameters by deriving their relationships with erosional hazard and criterion weight has been obtained using Saaty’s (Fundamentals of decision making and priority theory with analytical hierarchical process, RWS Publications University of Pittsburgh, Pittusburgh, 1980) proposed method. Based on prioritization approach the entire sub-watershed has divided into 3 vulnerable zones, i.e., high, medium and low. This study reveals that about 29% area of the watershed is falls under high vulnerable zone as they obtained high priority value and required immediate measures. In addition, ideal locations for measure structure to prevent soil erosion and maximize infiltration has been proposed which will be useful to the decision maker for land and water resource conservation, management, and sustainable agricultural development.

Keywords