Journal of Marine Science and Engineering (Nov 2024)
Study on the Influence of Wind Load on the Safety of Magnetic Adsorption Wall-Climbing Inspection Robot for Gantry Crane
Abstract
The maintenance of the surface of steel structures is crucial for ensuring the quality of shipbuilding cranes. Various types of wall-climbing robots have been proposed for inspecting diverse structures, including ships and offshore installations. Given that these robots often operate in outdoor environments, their performance is significantly influenced by wind conditions. Consequently, understanding the impact of wind loads on these robots is essential for developing structurally sound designs. In this study, SolidWorks software was utilized to model both the wall-climbing robot and crane, while numerical simulations were conducted to investigate the aerodynamic performance of the magnetic wall-climbing inspection robot under wind load. Subsequently, a MATLAB program was developed to simulate both the time history and spectrum of wind speed affecting the wall-climbing inspection robot. The resulting wind speed time-history curve was analyzed using a time-history analysis method to simulate wind pressure effects. Finally, modal analysis was performed to determine the natural frequency and vibration modes of the frame in order to ensure dynamic stability for the robot. The analysis revealed that wind pressure predominantly concentrates on the front section of the vehicle body, with significant eddy currents observed on its windward side, leeward side, and top surface. Following optimization efforts on the robot’s structure resulted in a reduction in vortex formation; consequently, compared to pre-optimization conditions during pulsating wind simulations, there was a 99.19% decrease in induced vibration displacement within the optimized inspection robot body. Modal analysis indicated substantial differences between the first six non-rigid natural frequencies of this vehicle body and those associated with its servo motor frequencies—indicating no risk of resonance occurring. This study employs finite element analysis techniques to assess stability under varying wind loads while verifying structural safety for this wall-climbing inspection robot.
Keywords