Journal of Manufacturing and Materials Processing (Nov 2022)
Laser Powder Bed Fusion Tool Repair: Statistical Analysis of 1.2343/H11 Tool Steel Process Parameters and Microstructural Analysis of the Repair Interface
Abstract
High pressure die casting (HPDC) tools undergo several repairs during their life cycle. Traditional repair methods (e.g., welding) cannot always be applied on damaged tools, necessitating complete replacement. Usually, direct energy deposition (DED) is considered and applied to repair tools. In this study, the potential of laser powder bed fusion (LPBF) for HPDC tool repair is investigated. LPBF of the hot work tool steel 1.2343/H11 normally requires preheating temperatures above 200 °C to overcome cracking. Therefore, a process window for the crack-susceptible hot work tool steel 1.2343/H11 with no preheating was developed to avoid preheating an entire preform. Laser power, hatch distance, and scan speed are varied to maximize relative density. Since the correlation of LPBF process parameters and resulting build quality is not fully understood yet, the relationship between process parameters and surface roughness is statistically determined. The identification of suitable process parameters with no preheating allowed crack-free processing of 1.2343/H11 tool steel via LPBF in this study. The LPBF repair of a volume of ~2000 cm3 was successfully carried out and microstructurally and mechanically characterized. A special focus lays on the interface between the worn HPDC tool and additive reconstruction, since it must withstand the mechanical and thermal loads during the HPDC process.
Keywords