Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review
José Juan Alvarado Flores,
Jorge Víctor Alcaraz Vera,
María Liliana Ávalos Rodríguez,
Luis Bernardo López Sosa,
José Guadalupe Rutiaga Quiñones,
Luís Fernando Pintor Ibarra,
Francisco Márquez Montesino,
Roberto Aguado Zarraga
Affiliations
José Juan Alvarado Flores
Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Av. Fco. J. Múgica s/n, Col. Felicitas del Rio, Morelia C.P. 58040, Michoacán, Mexico
Jorge Víctor Alcaraz Vera
Instituto de Investigaciones Económicas y Empresariales, Universidad Michoacana de San Nicolás de Hidalgo, Cd. Universitaria, Av. Fco. J. Múgica s/n, Col. Felicitas del Rio, Morelia C.P. 58040, Michoacán, Mexico
María Liliana Ávalos Rodríguez
Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de Mexico, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico
Luis Bernardo López Sosa
Maestría en Ingeniería para la Sostenibilidad Energética, Universidad Intercultural Indígena de Michoacán, Carretera Pátzcuaro-Huecorio Km-3, Pátzcuaro C.P. 61614, Michoacán, Mexico
José Guadalupe Rutiaga Quiñones
Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Av. Fco. J. Múgica s/n, Col. Felicitas del Rio, Morelia C.P. 58040, Michoacán, Mexico
Luís Fernando Pintor Ibarra
Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Edif. D. Cd. Universitaria, Av. Fco. J. Múgica s/n, Col. Felicitas del Rio, Morelia C.P. 58040, Michoacán, Mexico
Francisco Márquez Montesino
Departamento de Química, Universidad de Pinar del Rio, Pinar del Rio C.P. 20100, Cuba
Roberto Aguado Zarraga
Departamento de Ingeniería Química, Universidad Del País Vasco, UPV/EHU, P.O. Box 644, E48080 Bilbao, Spain
Today, energy use is an important and urgent issue for economic development worldwide. It is expected that raw material in the form of biomass and lignocellulosic residues will become increasingly significant sources of sustainable energy in the future because they contain components such as cellulose, hemicellulose, lignin, and extractables with high energy-producing potential. It is then essential to determine the behavior of these materials during thermal degradation processes, such as pyrolysis (total or partial absence of air/oxygen). Pyrolyzed biomass and its residual fractions can be processed to produce important chemical products, such as hydrogen gas (H2). Thermogravimetric (TGA) analysis and its derivative, DTG, are analytical techniques used to determine weight loss as a function of temperature or time and associate changes with certain degradation and mass conversion processes in order to evaluate kinetic properties. Applying kinetic methods (mathematical models) to degradation processes permits obtaining several useful parameters for predicting the behavior of biomass during pyrolysis. Current differential (Friedman) and integral (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Starink, Popescu) models vary in their range of heating speeds (β) and degree of advance (α), but some (e.g., Kissinger’s) do not consider the behavior of α. This article analyzes the results of numerous kinetic studies using pyrolysis and based on thermogravimetric processes involving over 20 distinct biomasses. The main goal of those studies was to generate products with high added value, such as bio-char, methane, hydrogen, and biodiesel. This broad review identifies models and determines the potential of lignocellulosic materials for generating bioenergy cleanly and sustainably.