Foods and Raw Materials (Oct 2019)
Degradation of β-Lactoglobulin during sourdough bread production
Abstract
The research featured various types and strains of lactic acid bacteria (LAB) and yeast. The research objective was to study their ability to utilize β-lactoglobulin during sourdough fermentation. The present paper also described the effect of sourdough fermentation and baking on β-lactoglobulin degradation. A set of experiments with various types and strains of LAB showed that β-lactoglobulin decreased in gluten-free sourdough with 30%, 60%, and 90% of skimmed milk powder (SMP). L.plantarum E36 demonstrated the highest biodegradation of β-lactoglobulin (by 53%) with SMP = 30%. L.helveticus ATCC8018T showed the lowest content of β-lactoglobulin with SMP = 60% and 90%: the content fell by 48% and 40%, respectively. The largest decrease in the content of β-lactoglobulin was observed in the sourdough with Saccharomyces cerevisiae 17 (by 28–42%) and Candida milleri Pushkinsky (by 25–41%). The content of total protein increased, which was not associated with yeast biomass growth. The content was determined after fermentation in sourdoughs with SMP = 60% and 90% using a bicinchoninic acid reagent kit. The content of β-lactoglobulin in the control and experimental samples did not exceed 1 μg/g in the finished bakery products. This fact indicated a significant effect of thermal treatment on β-lactoglobulin degradation in baking. Thus, temperature processing (baking) had a greater impact on the destruction of β-lactoglobulin than enzymatic processing (fermentation).
Keywords