Journal of Manufacturing and Materials Processing (Dec 2022)

Investigating the Properties of ABS-Based Plastic Composites Manufactured by Composite Plastic Manufacturing

  • Raghunath Bhaskar,
  • Javaid Butt,
  • Hassan Shirvani

DOI
https://doi.org/10.3390/jmmp6060163
Journal volume & issue
Vol. 6, no. 6
p. 163

Abstract

Read online

Additive manufacturing (AM) technologies have revolutionized the manufacturing sector due to their benefits, such as design flexibility, ease of operation, and wide material selection. The use of AM in composites production has also become quite popular to leverage these benefits and produce products with customized properties. In this context, thermoplastic materials are widely used in the development of plastic-based composites due to their affordability and availability. In this work, composite plastic manufacturing (CPM) has been used to manufacture plastic-based composites with bespoke properties in a cost- and time-effective manner. Various plastic-based composites have been manufactured using CPM by interlacing acrylonitrile butadiene styrene (ABS) with thermally activated materials. Three different thermally activated materials (graphene–carbon hybrid paste, heat cure epoxy, and graphene epoxy paste) have been used in this work to produce plastic-based composites. Thermally activated materials that are commercially available include graphene–carbon hybrid paste and heat cure epoxy. The graphene epoxy paste was a concoction made by incorporating three different weight percentages of graphene nanoplatelets (0.2 wt.%, 0.4 wt.%, and 0.6 wt.%) with heat cure epoxy. The composites were manufactured with multiple layers of thermally activated materials at different intervals to investigate their effect. The parts were manufactured and tested according to British and international standards. Experimental tests of mass, dimensions, ultrasonics, tensile strength, hardness, and flexural strength were conducted to evaluate the properties of composites manufactured by CPM. The parts manufactured by CPM showed superior mechanical properties compared to commercially available ABS. The increase was shown to be in the range of 8.1% to 33% for tensile strength, 17.8% to 30.2% for hardness, and 6.2% to 24.4% for flexural strength, based on the composite configurations. The results demonstrate that the CPM process can produce high-quality plastic composites and can be used to create products with customized properties in a time-effective manner.

Keywords