e-Polymers (Nov 2022)
Fabrication of silver ions aramid fibers and polyethylene composites with excellent antibacterial and mechanical properties
Abstract
Nowadays, with the continuous understanding of the pathogenic mechanism of bacterium, the demand for antibacterial plastic products had significantly increased. Besides that, many counties issued mandatory standards for plastic products, which imposed strict requirements on ash content to prevent the addition of excessive inorganic matter to plastics in order to avoid weakening the properties of plastics and deteriorating the recyclable property. Based on this, the development of composites with organic fiber-loaded antibacterial agents is of practicable value and urgency. We used an open-ring addition reaction to modified aramid fiber (AF) by utilizing epoxypropyltrimethoxysilane to react with the reactive groups on the surface of AFs. Subsequently, the modified fibers were surface loaded with silver ionic glass beads. After that, a series of high-density polyethylene composites with excellent mechanical properties and antibacterial properties were prepared using melt mixing method. It was shown that the composite had a low ash value (1.88 wt%) even at a higher filling concentration (7 wt%) and the fibers could change the crystalline properties and morphology of the composite. Because of the fiber reinforcement and crystallization induction effects, the tensile strength and elasticity module of the composites could be improved by 141% and 136%, respectively. In addition, the composites had excellent long-lasting contact antibacterial effects against the inhibition of E. coli. The proposed organic fiber loading technique and antibacterial composites will provide a method for designing and preparing eco-friendly and high-performance plastic products.
Keywords