Design and Analysis of the Cis-Lunar Navigation for the ArgoMoon CubeSat Mission
Marco Lombardo,
Marco Zannoni,
Igor Gai,
Luis Gomez Casajus,
Edoardo Gramigna,
Riccardo Lasagni Manghi,
Paolo Tortora,
Valerio Di Tana,
Biagio Cotugno,
Simone Simonetti,
Silvio Patruno,
Simone Pirrotta
Affiliations
Marco Lombardo
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum—Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
Marco Zannoni
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum—Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
Igor Gai
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum—Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
Luis Gomez Casajus
Centro Interdipartimentale di Ricerca Industriale Aerospaziale (CIRI AERO), Alma Mater Studiorum—Università di Bologna, Via Baldassarre Carnaccini 12, 47121 Forlì, Italy
Edoardo Gramigna
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum—Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
Riccardo Lasagni Manghi
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum—Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
Paolo Tortora
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum—Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
Valerio Di Tana
Argotec S.r.l., Via Cervino 52, 10155 Torino, Italy
Biagio Cotugno
Argotec S.r.l., Via Cervino 52, 10155 Torino, Italy
Simone Simonetti
Argotec S.r.l., Via Cervino 52, 10155 Torino, Italy
Silvio Patruno
Argotec S.r.l., Via Cervino 52, 10155 Torino, Italy
Simone Pirrotta
Agenzia Spaziale Italiana, Via del Politecnico, 00133 Roma, Italy
In the framework of the Artemis-1 mission, 10 CubeSats will be released, including the 6U CubeSat ArgoMoon, built by the Italian company Argotec and coordinated by the Italian Space Agency. The primary goal of ArgoMoon is to capture images of the Interim Cryogenic Propulsion Stage. Then, ArgoMoon will be placed into a highly elliptical orbit around the Earth with several encounters with the Moon. In this phase, the navigation process will require a precise Orbit Determination (OD) and a Flight Path Control (FPC) to satisfy the navigation requirements. The OD will estimate the spacecraft trajectory using ground-based radiometric observables. The FPC is based on an optimal control strategy designed to reduce the dispersion with respect to the reference trajectory and minimize the total ΔV. A linear approach was used to determine the optimal targets and the number and location of the orbital maneuvers. A covariance analysis was performed to assess the expected OD performance and its robustness. The analysis results show that the reference translunar trajectory can be successfully flown and the navigation performance is strongly dependent on the uncertainties of the ArgoMoon’s Propulsion Subsystem and of the orbit injection.