BioResources (Dec 2014)

Tensile Property Analysis and Prediction Model Building for Coir Rope Reinforced Unsaturated Polyester Composite

  • Jia Yao,
  • Lili Ma,
  • Wei Lu,
  • Haiyan Tan

DOI
https://doi.org/10.15376/biores.10.1.697-708
Journal volume & issue
Vol. 10, no. 1
pp. 697 – 708

Abstract

Read online

Because of the light weight and environmental advantages of natural fibers, an increasing amount of natural fibers have been used to replace synthetic fibers in reinforced unsaturated polyester (UPE). Because of the impact property advantage of coir fibers, coir toughened UPE composites can achieve excellent impacting toughness, but at the cost of a lower tensile performance. In order to get the better comprehensive performance, the tensile strength must be maintained in a higher level, so coir ropes as an appropriate reinforced form were added to UPE matrix. The different weight-percent contents for the coir rope addition were set to achieve coir rope reinforced UPE composites with different coir contents. The tensile test results showed increasing tensile strength with the increased content of coir ropes. To reasonably and accurately predict the composite performance, taking the original performance prediction model based on a continuous reinforced fiber composite (using the Classical Mixed Law as a reference) and assuming each coir rope was ideally continuous fiber, the destructive principle of coir rope reinforced UPE composite under the action of tensile load was analyzed and the tensile failure mechanics model was improved. According to the experimental proof, the new model can be proven to have higher precision accuracy, which can provide new train of thought for the building of the theoretical models for natural fiber reinforced composites, thus guiding the actual production application.

Keywords