Journal of Algebraic Systems (Sep 2020)

PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

  • H. Bijari,
  • K. Khashyarmanesh,
  • H. Fazaeli Moghim

DOI
https://doi.org/10.22044/jas.2019.8320.1407
Journal volume & issue
Vol. 8, no. 1
pp. 53 – 68

Abstract

Read online

‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $\mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(\operatorname{rad}Q:M)=\sqrt{(Q:M)}$‎. ‎In this paper‎, ‎we topologize $\mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $\operatorname{Spec}(M)$ as a subspace topology‎. ‎We investigate compactness and irreducibility of this topological space and provide some conditions under which $\mathcal{PS}(M)$ is a spectral space‎.

Keywords