Frontiers in Cardiovascular Medicine (Dec 2021)

Prognostic Value of Multiple Circulating Biomarkers for 2-Year Death in Acute Heart Failure With Preserved Ejection Fraction

  • Yan Gao,
  • Yan Gao,
  • Xueke Bai,
  • Xueke Bai,
  • Jiapeng Lu,
  • Jiapeng Lu,
  • Lihua Zhang,
  • Lihua Zhang,
  • Xiaofang Yan,
  • Xiaofang Yan,
  • Xinghe Huang,
  • Xinghe Huang,
  • Hao Dai,
  • Hao Dai,
  • Yanping Wang,
  • Yanping Wang,
  • Libo Hou,
  • Libo Hou,
  • Siming Wang,
  • Siming Wang,
  • Aoxi Tian,
  • Aoxi Tian,
  • Jing Li,
  • Jing Li

DOI
https://doi.org/10.3389/fcvm.2021.779282
Journal volume & issue
Vol. 8

Abstract

Read online

Background: Heart failure with preserved ejection fraction (HFpEF) is increasingly recognized as a major global public health burden and lacks effective risk stratification. We aimed to assess a multi-biomarker model in improving risk prediction in HFpEF.Methods: We analyzed 18 biomarkers from the main pathophysiological domains of HF in 380 patients hospitalized for HFpEF from a prospective cohort. The association between these biomarkers and 2-year risk of all-cause death was assessed by Cox proportional hazards model. Support vector machine (SVM), a supervised machine learning method, was used to develop a prediction model of 2-year all-cause and cardiovascular death using a combination of 18 biomarkers and clinical indicators. The improvement of this model was evaluated by c-statistics, net reclassification improvement (NRI), and integrated discrimination improvement (IDI).Results: The median age of patients was 71-years, and 50.5% were female. Multiple biomarkers independently predicted the 2-year risk of death in Cox regression model, including N-terminal pro B-type brain-type natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-TnT), growth differentiation factor-15 (GDF-15), tumor necrosis factor-α (TNFα), endoglin, and 3 biomarkers of extracellular matrix turnover [tissue inhibitor of metalloproteinases (TIMP)-1, matrix metalloproteinase (MMP)-2, and MMP-9) (FDR < 0.05). The SVM model effectively predicted the 2-year risk of all-cause death in patients with acute HFpEF in training set (AUC 0.834, 95% CI: 0.771–0.895) and validation set (AUC 0.798, 95% CI: 0.719–0.877). The NRI and IDI indicated that the SVM model significantly improved patient classification compared to the reference model in both sets (p < 0.05).Conclusions: Multiple circulating biomarkers coupled with an appropriate machine-learning method could effectively predict the risk of long-term mortality in patients with acute HFpEF. It is a promising strategy for improving risk stratification in HFpEF.

Keywords