Meitan xuebao (Mar 2024)
Precursory characteristics and disaster prevention of rock burst in roadway excavation in steeply inclined extra-thick coal seam
Abstract
With the gradual coal mining of deep rock burst mine, the impact accompanying roadway excavation becomes more and more intense. Aiming at the problem of effective prevention and control of rock burst in roadway excavation, taking the steep seam mine in the Wudong Coal Mine as an example, the temporal and spatial precursor characteristics of rock burst in roadway excavation were analyzed by microseismic monitoring. Combined with the numerical simulation analysis of stress and energy changes in roadway excavation, the mechanism of rock burst in roadway excavation was revealed, and the prevention and control strategy of rock burst in steeply inclined extra-thick coal seam roadway was put forward, which was verified by field engineering practice. The results show that the total energy of microseisms is extremely low for 2−5 days or there is an energy latency of at least 4 days before the rock burst occurs due to roadway excavation in steeply inclined extra-thick coal seam. Within 5 days before rock burst occurs, there is a high-frequency fluctuation period of maximum energy ratio for more than 3 days. There is an obvious lack of earthquake before the rock burst occurs, and the occurrence position is concentrated in the range of minimum value of microseismic energy near the heading face, or in the range of minimum value of microseismic frequency near the extreme value of microseismic energy, and the rock burst event is located in the area with high impact deformation energy index. The hard overburden structure of horizontal sublevel fully mechanized caving mining in steeply inclined extra-thick coal seam is not easy to break, which makes the stress concentration on both sides of upper horizontal goaf exist in roadway excavation. The stress between the front of the heading face and the bottom of the roadway squeezed by the roof and floor strata is concentrated and the energy accumulation is remarkable. With the increase of the heading depth of the roadway, the stress concentration and energy accumulation are further enhanced, which is easy to induce dynamic disasters such as rock burst. The prevention and control strategies of rock burst was established through comprehensive analysis, which consist of face blasting pressure relief, roadway drilling pressure relief and reinforcement support, and scaffolding in complex areas. Combined with the temporal and spatial precursory anomalies of rock burst, it provides an opportunity to strengthen the unloading pressure in time. Through the pressure relief of working face and roadway, the accumulated microseismic energy of more than 1×105 J per day did not occur during the excavation. After the support was optimized and the complex area was protected, the daily average microseismic energy of roadway excavation decreased to 2.2 kJ, and the proportion of microseismic events above 1 kJ decreased, and the overall section of roadway was flat.
Keywords