NeuroImage: Clinical (Jan 2024)

Discourse- and lesion-based aphasia quotient estimation using machine learning

  • Nicholas Riccardi,
  • Satvik Nelakuditi,
  • Dirk B. den Ouden,
  • Chris Rorden,
  • Julius Fridriksson,
  • Rutvik H. Desai

Journal volume & issue
Vol. 42
p. 103602

Abstract

Read online

Discourse is a fundamentally important aspect of communication, and discourse production provides a wealth of information about linguistic ability. Aphasia commonly affects, in multiple ways, the ability to produce discourse. Comprehensive aphasia assessments such as the Western Aphasia Battery-Revised (WAB-R) are time- and resource-intensive. We examined whether discourse measures can be used to estimate WAB-R Aphasia Quotient (AQ), and whether this can serve as an ecologically valid, less resource-intensive measure. We used features extracted from discourse tasks using three AphasiaBank prompts involving expositional (picture description), story narrative, and procedural discourse. These features were used to train a machine learning model to predict the WAB-R AQ. We also compared and supplemented the model with lesion location information from structural neuroimaging. We found that discourse-based models could estimate AQ well, and that they outperformed models based on lesion features. Addition of lesion features to the discourse features did not improve the performance of the discourse model substantially. Inspection of the most informative discourse features revealed that different prompt types taxed different aspects of language. These findings suggest that discourse can be used to estimate aphasia severity, and provide insight into the linguistic content elicited by different types of discourse prompts.

Keywords