BMC Health Services Research (Aug 2022)

Cost-effectiveness analysis of newborn screening by tandem mass spectrometry in Shenzhen, China: value and affordability of new screening technology

  • Mingren Yu,
  • Juan Xu,
  • Xiaohong Song,
  • Jiayue Du

DOI
https://doi.org/10.1186/s12913-022-08394-4
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Newborn screening (NBS) can prevent inborn errors of metabolism (IEMs), which may cause long-term disability and even death in newborns. However, in China, tandem mass spectrometry (MS/MS) screening has just started. This study aimed to assess the cost-effectiveness of NBS using MS/MS in Shenzhen under the nationally recommended program, as well as evaluate the value and affordability of introducing this new screening technology. Methods A Markov model was built to estimate the cost and quality-adjusted life-years (QALYs) of different screening programs. We compared PKU screening using traditional immunofluorescence (IF) with the other 11 IEMs not screened and all 12 IEMs screened using MS/MS, and the programs detecting different numbers of IEMs chosen from the national recommended program were also compared. A sensitivity analysis and budget impact analysis (BIA) were performed. Results The incremental cost-effectiveness ratio (ICER) of detecting all 12 IEMs in the national program is 277,823 RMB per QALY, below three times per capita GDP in Shenzhen. MS/MS screening in Shenzhen can be cost-effective only if at least three diseases (PKU, PCD and MMA) are covered and when the screening program covers five diseases (PKU, PCD, MMA, MSUD, IVA), the ICER closely approaches its critical threshold. The BIA indicated the implementation cost of the national program to be around 490 million RMB over 10 years and showed no difference in budget between programs detecting different numbers of IEMs. Conclusions We conclude that the newborn screening using MS/MS in Shenzhen is cost-effective, and the budget affordable for the Shenzhen government. Two concepts for selecting the IEMs to be detected are also presented. One is to choose the most cost-effective screening programs detecting highest number of IEMs to achieve a minimal ICER. The other considers the curability and affordability of the disease as the basis of healthcare decisions to screen suitable IEMs, achieving an ICER under the threshold and close to the minimum value.

Keywords