World Electric Vehicle Journal (Nov 2024)
Research on Energy Management Technology of Photovoltaic-FESS-EV Load Microgrid System
Abstract
This study focuses on the development and implementation of coordinated control and energy management strategies for a photovoltaic–flywheel energy storage system (PV-FESS)-electric vehicle (EV) load microgrid with direct current (DC). A comprehensive PV-FESS microgrid system is constructed, comprising PV power generation, a flywheel energy storage array, and electric vehicle loads. The research delves into the control strategies for each subsystem within the microgrid, investigating both steady-state operations and transitions between different states. A novel energy management strategy, centered on event-driven mode switching, is proposed to ensure the coordinated control and stable operation of the entire system. Based on the simulation results, the PV system cannot cope with the load demand power when it is increased to a maximum of 2800 W, the effectiveness of the individual control strategies, the coordinated control of the subsystems, and the overall energy management approach are confirmed. The main contribution of this research is the development of a coordinated control mechanism that integrates PV generation with FESS and EV loads, ensuring synchronized operation and enhanced stability of the microgrid. This work provides significant insights into optimizing energy distribution and minimizing losses within microgrid systems, thereby advancing the field of energy management in DC microgrids.
Keywords