GIScience & Remote Sensing (Jan 2018)

Evaluation of Goddard’s LiDAR, hyperspectral, and thermal data products for mapping urban land-cover types

  • Caiyun Zhang,
  • Molly Smith,
  • Chaoyang Fang

DOI
https://doi.org/10.1080/15481603.2017.1364837
Journal volume & issue
Vol. 55, no. 1
pp. 90 – 109

Abstract

Read online

Goddard’s LiDAR (Light Detection And Ranging), hyperspectral and thermal (G-LiHT) airborne imager is a new system to advance concepts of data fusion for worldwide applications. A recent G-LiHT mission conducted in June 2016 over an urban area opens a new opportunity to assess the G-LiHT products for urban land-cover mapping. In this study, the G-LiHT hyperspectral and LiDAR-canopy height model (LiDAR-CHM) products were evaluated to map five broad land-cover types. A feature/decision-level fusion strategy was developed to integrate two products. Contemporary data processing techniques were applied, including object-based image analysis, machine-learning algorithms, and ensemble analysis. Evaluation focused on the capability of G-LiHT hyperspectral products compared with multispectral data with similar spatial resolution, the contribution of LiDAR-CHM, and the potential of ensemble analysis in land-cover mapping. The results showed that there was no significant difference between the application of the G-LiHT hyperspectral product and simulated Quickbird data in the classification. A synthesis of G-LiHT hyperspectral and LiDAR-CHM products achieved the best result with an overall accuracy of 96.3% and a Kappa value of 0.95 when ensemble analysis was applied. Ensemble analysis of the three classifiers not only increased the classification accuracy but also generated an uncertainty map to show regions with a robust classification as well as areas where classification errors were most likely to occur. Ensemble analysis is a promising tool for land-cover classification.

Keywords