PLoS ONE (Jan 2020)
Staphylococcus aureus-induced proteomic changes in the mammary tissue of rats: A TMT-based study.
Abstract
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows. The objective of this study was to establish a rat model of mastitis induced by S. aureus infection and to explore changes in the proteomes of mammary tissue in different udder states, providing a better understanding of the host immune response to S. aureus mastitis. On day 3 post-partum, 6 rats were randomly divided into two groups (n = 3), with either 100 μL of PBS (blank group) or a S. aureus suspension containing 2×107 CFU·mL-1 (challenge group) infused into the mammary gland duct. After 24 h of infection, the rats were sacrificed, and mammary gland tissue was collected. Tandem mass tag (TMT)-based technology was applied to compare the proteomes of healthy and mastitic mammary tissues. Compared with the control group, the challenge group had 555 proteins with significant differences in expression, of which 428 were significantly upregulated (FC>1.2 and p0.83 and p<0.05 or p<0.01). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that upregulated differentially significant expressed proteins (DSEPs) were associated with mainly immune responses, including integrin alpha M, inter-α-trypsin inhibitor heavy chain 4, and alpha-2-macroglobulin. This study is the first in which a rat model of S. aureus-induced mastitis was used to explore the proteins related to mastitis in dairy cows by TMT technology, providing a model for replication of dairy cow S. aureus-induced mastitis experiments.