Axioms (Jun 2023)
An Efficient Jarratt-Type Iterative Method for Solving Nonlinear Global Positioning System Problems
Abstract
The global positioning system (GPS) is a satellite navigation system that determines locations. Whenever the baseline satellites are serviced or deactivated, the Space Force often flies more than 24 GPS satellites to maintain coverage. The additional satellites are not regarded as a part of the core constellation but may improve the performance of the GPS. In this study of GPS models, we solved various problems. We examined each set of four satellites separately. Advancements in computer softwares have made computations much more precise. We can use iterative methods to solve GPS problems. Iterative schemes for solving nonlinear equations have always been of great importance because of their applicability to real-world problems. This paper involves the development of an efficient family of sixth-order Jarratt-type iterative schemes for analyzing nonlinear global positioning systems.
Keywords