Atmospheric Chemistry and Physics (Dec 2020)

Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region

  • Y. Chen,
  • Y. Chen,
  • Q. Ma,
  • W. Lin,
  • X. Xu,
  • J. Yao,
  • W. Gao

DOI
https://doi.org/10.5194/acp-20-15969-2020
Journal volume & issue
Vol. 20
pp. 15969 – 15982

Abstract

Read online

This study analyzed the long-term variations in carbon monoxide (CO) mixing ratios from January 2006 to December 2017 at the Lin'an regional atmospheric background station (LAN; 30.3∘ N, 119.73∘ E, 138 m a.s.l.) in China's Yangtze River Delta (YRD) region. The CO mixing ratios were at their highest (0.69 ± 0.08 ppm) and lowest (0.54 ± 0.06 ppm) in winter and summer, respectively. The average daily variation in CO exhibited a double-peaked pattern, with peaks in the morning and evening and a valley in the afternoon. A significant downward trend of −11.3 ppb yr−1 of CO was observed from 2006 to 2017 at the LAN station, which was in accordance with the negative trends of the average CO mixing ratios and total column retrieved from the satellite data (Measurements of Pollution in the Troposphere, MOPITT) over the YRD region during the same period. The average annual CO mixing ratio at the LAN station in 2017 was 0.51 ± 0.04 ppm, which was significantly lower than that (0.71 ± 0.12 ppm) in 2006. The decrease in CO levels was largest in autumn (−15.7 ppb yr−1), followed by summer (−11.1 ppb yr−1), spring (−10.8 ppb yr−1), and winter (−9.7 ppb yr−1). Moreover, the CO levels under relatively polluted conditions (the annual 95th percentiles) declined even more rapidly (−22.4 ppb yr−1, r=-0.68, p<0.05) from 2006 (0.91 ppm) to 2017 (0.58 ppm), and the CO levels under clean conditions (the annual 5th percentiles) showed decreasing evidence but not statistically significant (r=-0.41, p=0.19) throughout the years. The long-term decline and short-term variations in the CO mixing ratios at the LAN station were mainly attributed to the implementation of the anthropogenic pollution control measures in the YRD region and to events like the Shanghai Expo in 2010 and Hangzhou G20 in 2016. The decreased CO level may influence atmospheric chemistry over the region. The average OH reactivity of CO at the LAN station is estimated to significantly drop from 4.1 ± 0.7 s−1 in 2006 to 3.0 ± 0.3 s−1 in 2017.