Micromachines (May 2023)

Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing

  • Xinxue Ma,
  • Jianli Wang,
  • Bin Wang,
  • Xinyue Liu,
  • Yuqiang Chen

DOI
https://doi.org/10.3390/mi14061142
Journal volume & issue
Vol. 14, no. 6
p. 1142

Abstract

Read online

Complex optical elements have the advantages of improving image quality and optical performance and expanding the field of view. Therefore, it is widely used in X-ray scientific devices, adaptive optical elements, high-energy laser systems, and other fields and is a hot research direction in precision optics. Especially for precision machining, there is a greater need for high-precision testing technology. However, how to measure complex surfaces efficiently and accurately is still an important research topic in optical metrology technology. In order to verify the ability of optical metrology for complex optical surfaces with wavefront sensing based on image information of the focal plane, some experiment platforms in different types of optical surfaces were set up. In order to validate the feasibility and validity of wavefront-sensing technology based on image information of focal planes, a large number of repetitive experiments were carried out. The measurement results with wavefront sensing based on image information of the focal plane were compared with the measurement results with the ZYGO interferometer. The experimental results demonstrate that good agreement is obtained among the error distribution, PV value, and RMS value of the ZYGO interferometer, which shows the feasibility and validity of wavefront sensing based on image information of focal plane technology in optical metrology for the complex optical surface.

Keywords