Forum of Mathematics, Pi (Jan 2022)
On the Kottwitz conjecture for local shtuka spaces
Abstract
Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of $\operatorname {\mathrm {GL}}_n$ , the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands.
Keywords