BMC Medical Informatics and Decision Making (May 2018)
Implementation of a patient-facing genomic test report in the electronic health record using a web-application interface
Abstract
Abstract Background Genomic medicine is emerging into clinical care. Communication of genetic laboratory results to patients and providers is hampered by the complex technical nature of the laboratory reports. This can lead to confusion and misinterpretation of the results resulting in inappropriate care. Patients usually do not receive a copy of the report leading to further opportunities for miscommunication. To address these problems, interpretive reports were created using input from the intended end users, patients and providers. This paper describes the technical development and deployment of the first patient-facing genomic test report (PGR) within an electronic health record (EHR) ecosystem using a locally developed standards-based web-application interface. Methods A patient-facing genomic test report with a companion provider report was configured for implementation within the EHR using a locally developed software platform, COMPASS™. COMPASS™ is designed to manage secure data exchange, as well as patient and provider access to patient reported data capture and clinical display tools. COMPASS™ is built using a Software as a Service (SaaS) approach which exposes an API that apps can interact with. Results An authoring tool was developed that allowed creation of patient-specific PGRs and the accompanying provider reports. These were converted to a format that allowed them to be presented in the patient portal and EHR respectively using the existing COMPASS™ interface thus allowing patients, caregivers and providers access to individual reports designed for the intended end user. Conclusions The PGR as developed was shown to enhance patient and provider communication around genomic results. It is built on current standards but is designed to support integration with other tools and be compatible with emerging opportunities such as SMART on FHIR. This approach could be used to support genomic return of results as the tool is scalable and generalizable.
Keywords