PLoS ONE (Oct 2010)

Climate change alters seedling emergence and establishment in an old-field ecosystem.

  • Aimée T Classen,
  • Richard J Norby,
  • Courtney E Campany,
  • Katherine E Sides,
  • Jake F Weltzin

DOI
https://doi.org/10.1371/journal.pone.0013476
Journal volume & issue
Vol. 5, no. 10
p. e13476

Abstract

Read online

Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future.We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO(2) regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO(2) concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species.The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change.