Vaccines (Jul 2024)
Effectively Evaluating a Novel Consensus Subunit Vaccine Candidate to Prevent the H9N2 Avian Influenza Virus
Abstract
The enormous effects of avian influenza on poultry production and the possible health risks to humans have drawn much attention to this disease. The H9N2 subtype of avian influenza virus is widely prevalent among poultry, posing a direct threat to humans through infection or by contributing internal genes to various zoonotic strains of avian influenza. Despite the widespread use of H9N2 subtype vaccines, outbreaks of the virus persist due to the rapid antigenic drift and shifts in the influenza virus. As a result, it is critical to develop a broader spectrum of H9N2 subtype avian influenza vaccines and evaluate their effectiveness. In this study, a recombinant baculovirus expressing the broad-spectrum HA protein was obtained via bioinformatics analysis and a baculovirus expression system (BES). This recombinant hemagglutinin (HA) protein displayed cross-reactivity to positive sera against several subbranch H9 subtype AIVs. An adjuvant and purified HA protein were then used to create an rHA vaccine candidate. Evaluation of the vaccine demonstrated that subcutaneous immunization of the neck with the rHA vaccine candidate stimulated a robust immune response, providing complete clinical protection against various H9N2 virus challenges. Additionally, virus shedding was more effectively inhibited by rHA than by the commercial vaccine. Thus, our findings illustrate the efficacy of the rHA vaccine candidate in shielding chickens against the H9N2 virus challenge, underscoring its potential as an alternative to conventional vaccines.
Keywords