Applied Sciences (Jun 2020)

First-Principles Study of the Stabilization and Mechanical Properties of Rare-Earth Ferritic Perovskites (RFeO<sub>3</sub>, R = La, Eu, Gd)

  • Mahdi Faghihnasiri,
  • Vahid Najafi,
  • Farzaneh Shayeganfar,
  • Ali Ramazani

DOI
https://doi.org/10.3390/app10114008
Journal volume & issue
Vol. 10, no. 11
p. 4008

Abstract

Read online

Current research aims to investigate the mechanical properties of rare earth perovskite ferrites (RFeO3, R = La, Eu, Gd) utilizing density functional theory (DFT) calculations. Using the revised Perdew–Burke–Ernzerhof approximation for solids (PBEsol) approximation, the elastic constants, bulk, Young’s, and shear modulus, Poisson’s ratio, and anisotropic properties are calculated. The quantum theory of atoms in molecules (QTAIM) is employed to analyze the stability of chemical bonds in the structures subjected to an external loading. Based on these calculations, Fe-O and R-O bonds can be considered as nearly ionic, which is due to the large difference in electronegativity of R and Fe with O. Additionally, our results reveal that the charge density values of the Fe-O bonds in both structures remain largely outside of the ionic range. Finally, the mechanical response of LaFeO3, EuFeO3, and GdFeO3 compounds to various cubic strains is investigated. The results show that in RFeO3 by increasing the radius of the lanthanide atom, the mechanical properties of the material including Young’s and bulk modulus increase.

Keywords