Scientific Reports (Jan 2024)

Identification of human skin microbiome odorants that manipulate mosquito landing behavior

  • Iliano V. Coutinho-Abreu,
  • Omid Jamshidi,
  • Robyn Raban,
  • Katayoon Atabakhsh,
  • Joseph A. Merriman,
  • Omar S. Akbari

DOI
https://doi.org/10.1038/s41598-023-50182-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin volatiles. We demonstrated that landing behavior is gated by the presence of carbon dioxide and L-(+)-lactic acid. This is similar to the combinatorial coding triggering mosquito short range attraction. Repellency behavior to selected skin volatiles and terpenes was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0–81.6% and 87.1–99.6%, respectively. Similarly, the terpene geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of terpenes in mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69–78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid change the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.