Physics Letters B (Aug 2024)
Acceleration as a circular motion along an imaginary circle: Kubo-Martin-Schwinger condition for accelerating field theories in imaginary-time formalism
Abstract
We discuss the imaginary-time formalism for field theories in thermal equilibrium in uniformly accelerating frames. We show that under a Wick rotation of Minkowski spacetime, the Rindler event horizon shrinks to a point in a two-dimensional subspace tangential to the acceleration direction and the imaginary time. We demonstrate that the accelerated version of the Kubo-Martin-Schwinger (KMS) condition implies an identification of all spacetime points related by integer-multiple rotations in the tangential subspace about this Euclidean Rindler event-horizon point, with the rotational quanta defined by the thermal acceleration, α=a/T. In the Wick-rotated Rindler hyperbolic coordinates, the KMS relations reduce to standard (anti-)periodic boundary conditions in terms of the imaginary proper time (rapidity) coordinate. Our findings pave the way to study, using first-principle lattice simulations, the Hawking-Unruh radiation in geometries with event horizons, phase transitions in accelerating Early Universe and early stages of quark-gluon plasma created in relativistic heavy-ion collisions.