Journal of Pharmacy & Pharmaceutical Sciences (Aug 2021)
Synthesis of New Hybrid Derivatives from Metronidazole and Eugenol Analogues as Trypanocidal Agents
Abstract
Background: The search for new drug compounds is always challenging and there are several different strategies that involve the most varied and creative approaches in medicinal chemistry. One of them is the technique of molecular hybridisation: forming a hybrid compound from two or more pharmacophoric subunits. These hybrids may maintain the characteristics of the original compound and preferably show improvements to its pharmacological action, with reduced side effects and lower toxicity when compared to the original components. This study specifically focuses on synthesising hybrid molecules which demonstrate trypanocidal activity against the epimastigote and trypomastigote forms of Trypanosoma cruzi. Methods: In this context, this study centres on the synthesis of a novel structural scaffold via molecular hybridisation; by using a triazole species to link a metronidazole unit to a eugenol analogue unit, the objective being to combine their therapeutic properties into a new molecular structure. The resulting hybrid molecules were evaluated against T. cruzi which is responsible for high incidences of trypanosomiasis in tropical countries such as Brazil. Results: The results of this study showed an improvement in the anti-parasitic activity of the hybrid compounds with the best result coming from hybrid compounds [8] and [9], which present an activity similar to the control drug benznidazole. The new compounds, utilising a triazole species as a coupling connector, demonstrated promising results and has highlighted the path for planning similar structural patterns to investigate new compounds. Conclusions: In summary, we can conclude that the synthesised hybrid compounds demonstrate that using a triazole to link metronidazole with natural phenols, produces hybrid molecules that are promising as a new class of compounds of therapeutic interest for further investigation.